A structured low-rank matrix pencil for spectral estimation and system identification
نویسندگان
چکیده
In this paper we propose a new matrix pencil based method for estimating parameters (frequencies and damping factors) of exponentially damped sinusoids in noise. The proposed algorithm estimates the signal parameters using a matrix pencil constructed from measured data. We show that the performance of the estimation can be signiicantly improved by the combination of our proposed matrix pencil algorithm and the structured low rank approximation of the data matrix. Comparison of our matrix pencil method to existing matrix pencil methods as well as to polynomial methods show that our matrix pencil method is more accurate in estimating the signal parameters. It is found through computer simulations that, for exponentially damped sinusoids, our matrix pencil method is less sensitive to noise and has a lower signal-to-noise ratio (SNR) threshold.
منابع مشابه
SPECTRAL ESTIMATION BASED ON STRUCTURED LOW RANK MATRIX PENCIL - Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE Inte
This paper proposes a new parameter estimation algorithm for damped sinusoidal signals. Parameter estimation for damped sinusoidal signals with additive white noise is a problem of significant interest in many signal processing applications, like analysis of NMR data and system identification. The new algorithm estimates the signal parameters using a matrix pencil constructed from the measured ...
متن کاملSpectral estimation based on structured low rank matrix pencil
This paper proposes a new parameter estimation algorithm for damped sinusoidal signals. Parameter estimation for damped sinusoidal signals with additive white noise is a problem of signiicant interest in many signal processing applications, like analysis of NMR data and system identiication. The new algorithm estimates the signal parameters using a matrix pencil constructed from the measured da...
متن کاملA Parameter Estimation Scheme for Damped Sinusoidal Signals Based on Low-Rank Hankel Approximation [ - Signal Processing, IEEE Transactions on
Most of the existing algorithms for parameter estimation of damped sinusoidal signals are based only on the low-rank approximation of prediction matrix and ignore the Hankel property of the prediction matrix. In this correspondence, we propose a modified KT (MKT) algorithm exploiting both rank-deficient and Hankel properties of the prediction matrix. Computer simulation results demonstrate that...
متن کاملA parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation
Most of the existing algorithms for parameter estimation of damped sinusoidal signals are based only on the low-rank approximation of prediction matrix and ignore the Hankel property of the prediction matrix. In this article, we propose a modiied KT (MKT) algorithm exploiting both rank-deecient and Hankel properties of the prediction matrix. Computer simulation results demonstrate that, compare...
متن کاملSoftware for weighted structured low-rank approximation
A software package is presented that computes locally optimal solutions to low-rank approximation problems with the following features: • mosaic Hankel structure constraint on the approximating matrix, • weighted 2-norm approximation criterion, • fixed elements in the approximating matrix, • missing elements in the data matrix, and • linear constraints on an approximating matrix’s left kernel b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 65 شماره
صفحات -
تاریخ انتشار 1998